If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1326=16t^2
We move all terms to the left:
1326-(16t^2)=0
a = -16; b = 0; c = +1326;
Δ = b2-4ac
Δ = 02-4·(-16)·1326
Δ = 84864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84864}=\sqrt{64*1326}=\sqrt{64}*\sqrt{1326}=8\sqrt{1326}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1326}}{2*-16}=\frac{0-8\sqrt{1326}}{-32} =-\frac{8\sqrt{1326}}{-32} =-\frac{\sqrt{1326}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1326}}{2*-16}=\frac{0+8\sqrt{1326}}{-32} =\frac{8\sqrt{1326}}{-32} =\frac{\sqrt{1326}}{-4} $
| 688-r=128 | | 7/8x-5/3x=3 | | 9a+3a-6=32 | | 49d^2-36d+0=0 | | 1x(56)=31 | | (1/2)x-3=(1/5)x+6 | | 8/10=x/12 | | 7x+2-(3x+5)=17 | | -4-8=6y+32 | | 7x+-1=3x+1 | | -16+8x=7(x-3) | | 6v+8-v=5(v+3) | | 5/3x+1/3x=10+7/3x | | 23=4b-1+4b | | 4x-1/3=7/3 | | y=4+0.5 | | (1/2x)-3=(1/5x)+6 | | 5(x-2)+10=40 | | 80=105-5m | | 5(4x-3)+10x=3(x+4) | | (2004)(20,000)=3,421x | | {-4}x=320 | | 50h=190-45 | | x2-10x-24=0 | | 4x^2=5-19x | | 6(u-2)=-8u+2 | | (4d2-3d+6)d=-3/2 | | Y=(0.95)r+2 | | -16-6n=8(5n-2) | | -3-12=5y+36 | | |x|=18 | | 32=9n+14 |